NAIC-ID(RS)T-0025-95

NATIONAL AIR INTELLIGENCE CENTER

DECOMPILE PROGRAM GRAPH DESIGN AND CONTROLLING FLOW ANALYSIS

by

Lu Jiquan, Hou Wenyong

Approved for public release;
Distnbution unlimited.

DTIC QUALLTY INEPIITED &

DU o - S SN R N 22,3302

NAIC-ID(RS)T-0025-95

HUMAN TRANSLATION
NAIC-ID(RS)T-0025-95 1 May 1995

MICROFICHE NR: Qg Co o0 NG
DECOMPILE PROGRAM GRAPH DESIGN AND CONTROLLING FLOW ANALYSIS
By: Lu Jiquan, Hou Wenyong
English pages: 14
Source: Jisuanji Gongcheng, Vol. 18, Nr. 6, 1992; pp. 33-37
Country of origin: China
Translated by: SCITRAN
F33657-84-D-0165

Requester: NAIC/TATA/Keith D. Anthony o
Approved for public release; Distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL | PREPARED BY:
FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITO-
RIAL COMMENT STATEMENTS OR THEORIES ADVO- | TRANSLATION SERVICES

CATED OR IMPLIED ARE THOSE OF THE SOURCE AND | NATIONAL AIR INTELLIGENCE CENTER
DO NOT NECESSARILY REFLECT THE POSITION OR | WPAFB, OHIO

OPINION OF THE NATIONAL AIR INTELLIGENCE CENTER.

NAIC- ID(RS)T-0025-95 Date 1 May 1995

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this

translation were extracted from the best quality copy

available,
Accesion For \\)-._J
NTIS CRAZI \/
DTIC TAB N
Unannounced]
Justification .
3
|
BY e 4
Distribution| ;
ey
Avazilability Cocos ‘
U Avail and|jor
Dist Special

DECOMPILE PROGRAM GRAPH DESIGN AND CONTROLLING FLOW ANALYSIS
/38

Lu Jiquan Hou Wenyong

ABSTRACT

Decompiling is a type of tool capable of taking
low level languages and translating them into high level
languages. This article stresses the introduction of program
graph methods associated with decompile code storage as well as--
on the basis of programming graphs--the carrying out of
controlling flow analysis and controlling structure restoration
with regard to code programs. It gives algorithms for restoring

structures and translation of program graphs during controlling
flow analysis processes.
KEY WORDS Decompile Controlling Flow Program graph

1 PROGRAM GRAPH DESIGN

Among high level languages, there are several types of control
statements, for example, if, while, dowhile, and switch
statements, etc. They are capable of insertion into sets with
each other, thus making high level languages possess
multitudinous variations. Through post-decompilation target
codes, these control statements are then implicitly contained in
compilation codes or target operating codes, forming complicated,
mutually inserted sets of control structures. Among these, there
will appear a number of conditional direction change commands.
As far as control structure restoration is concerned, it is
nothing else than taking these implicitly contained basic control
structures and restoring them to shed light on higher level
language control statements. This only requires carrying out

controlling flow analysis on program code.

* Numbers in margins indicate foreign pagination.
Commas in numbers indicate decimals.

1

During controlling flow analysis processes, a good number of
intermediate results will be produced. This is due to controlling
flow analysis of compilation programs or target operating
programs. It is necessary to carry out repeated scanning of
program codes and analyze them step by step. Of necessity,
intermediate results associated with numerous levels will be
produced. The normal display is a type of program form which 1is
higher than compilation language and lower than high level
language, that is, a type of transitional result associated with
compilation to a high level language. Sometimes, it is possible
to call it intermediate language. In order to show this type of
multilevel transitional program code, we designed a type of
program interior storage form. It satisfies the need to show
intermediate products associated with different levels of
decompilation, thus flexibly actualizing translations associated
with intermediate results between various types of levels.

The storage form associated with this type of program code
intermediate product, in actuality, is a type of program flow
graph. Using graphic forms to store decompilation results is
unusually appropriate to the internal storage of machines. At
the same time, during decompilation operating processes, it is
necessary to carry out depth prioritized searches. Graphic
storage forms are unusually advantageous to this type of search.
Fig.1l shows the basic junction point structure associated with
program graphs.

What follows introduces several key terms associated with

the analysis of flow control:

(1) char tine[40]: storage level no. character
string
(2) char opera[l0]: operation character

(3)
(4)
(5)
(6)
(7)
(8)

int var(4]:

int true, false:
int *ent-1lst:

int order:

short ent:
unsigned Nod-flag:

typedef struct

{

char line [40];

char opera [10]s

unsigned char op.type[4];
un signed short stnt[d],‘ i

int vari(4]

unsigned short uscd_by, usced_of [15];

int truc, falscy
inf xent_lst,

int order,

short cnt,

short Le_c,
unsigned nod-flag,
}TREE_NND,

operation no.
export outlet
previous item interface link
interface order
previous item interface no.
information flags associated
with relevant interfaces
/34

Fig.1l

Emphasize a look at the functions of operation characters,

operation numbers, and export outlets.

Key: (1)

Outlet

/ 2-

2 3 3

B PR (81 B e e e 2

i

opera vari(0]---vari[3] truc falsc

Operation Character

(2) Operation No. (3) Export

The meaning is as follows:

(1) vari[3]:=vari[O][opera]vari[l]

This refers mostly to forms of expression.

When opera is not a conditional direction change operation
number, false refers to a unique follow-on interface associated
with the interfaces in question. When opera is a conditional
direction change, ture refers to follow on interfaces associated
with conditions that are true. false refers to follow on
interfaces that are associated with conditions that are false.

(2) Statements Primarily Aimed at High Level Languages

opera expresses a certain statement pattern in high level
language--if statements, cyclical statements, switch statements,
and so on. Here, as far as cyclical statements are concerned,
there are while and dowhile. However, for statements are not
included because for statements in this article are taken and
turned into the two previous types of cyclical statements.

At this time, this basic interface expresses one statement in
high level language. The reason for this is that, in high level
language, statements are capable of insertion into sets.
Therefore, what is reflected here is a tree of which this basic
interface is the root. With regard to language inserted in sets,
it is nothing else than sub-trees included in the tree.

This type of basic junction point is appropriate for use in
the display of various kinds of intermediate results. During
control flow analysis processes, the various control structures,

in all cases, use this interface for display.

(1)

(2)

(3)

(4)

if-else statement

if (logic-exp) then s; else s,
Opcra Van0] Van{l] van[2] Van(3] true false

[nrl / l{ J II [| [”}’;aw
7

Key: (1) Next Interface > > A

do-while statement
do S while (logic-exp) [wowmic]y [| - | T ”z;

Logic-cxp

Key: (1) Next Interface (2) Loop

while statement
while (logic-exp)

s S N S I I O
@
R,

Logic—£xp

Key: (1) Next Interface (2) Loop
switch statement
switch (exp)
{case CO: SO
case Cl: S1

case Cn: Sn

default: S
}

In the Fig. below, Ci=base+ai(i:0~n)
C; is a constant
base is a base constant

a; is an integer serial no.

l',;“cb.lcxplb"‘l : l : l e A
S O O
I B R = g O

Key: (1) Next Interface rv ["Til

{
Femr [11

(5) continue statement

e ——

Key: (1) Next Interface
(6) Dbreak statement

O =

Key: (1) Next Interface

/35

(7) GoTo statement

O O s P

Key: (1) Next Interface
(8) Formulaic Statements
Formulaic statements are generally used to express
tree forms (illustrate with examples).

This is due to formulaic expressions being capable,
during multiple operations--more than 3 operation numbers--of
exceeding basic interface expression capabilities.

For example, the expression d=(i+j)*k-i/d
The corresponding compilation language program section
is:
ADDL, i, j, R.
MullL k, R.
DIVL i, d, R;
SUBL Ry, R; d

Rool

|
CL L1
Using the expression form tree, it shows as

— =
L T FLERL L
LI 1]

On the basis of middle level universal mechanisms, this tree

then arrives at this form of expression.

In the expression forms above, Sg, Si, Sy,,..-S,, S, are all
program sub-graphics formed using basic interfaces. In reality,
various types of statements are formed into a tree using basic
junction points. When decompilation operations reach a certain
stage, controlling flow analysis is complete. The entire program
graph is then one regressive tree, appearing as a single linked
form. The first junction point interface is none other than the
first statement in the program. Each interface expresses one
statement in high level language. Moreover, each junction point

is a tree using interfaces as roots in order to express a

7

statement. Each interface in trees expresses one statement in
the language. Moreover, the mutual relationships between
junction points embody the relationships associated with mutual
set insertion between various statements in high level languages.
The entire program graph is nothing else than a graphical
expression of high level programs, capable of being turned
directly into high level target programs.

2 CONTROLLING FLOW ANALYSIS BASED ON PROGRAM GRAPHS

Below, control flow analysis is carried out on code programs
based on program graphs.

Various types of control structures associated with
compilation languages are expressed by the use of conditional or
nonconditional translations. This is one form of expression for
weak linear structures. Program control structure recovery is
nothing else than the need to carry out analysis of program
controlling flow, seeking out the basic structural component--in
conjunction with this, taking it and shedding light on equivalent
high level language control structures.

What must be carried out first is the recovery of logic
expressions. Compilation language--when carrying out logic
decisions--operates relying on machine status registers. Due to
the fact that status registers are only capable of recording one
iteration of logic comparison results--when determining whether
or not there are multiple conditions--compilation language,
therefore, is only capable of adding processing to these
conditions one at a time. In conjunction with this, lateral
logic direction change connections are used in order to express
the logical relationships between various decisions. The
summation of these logical decisions is, at the same time, the
first step associated with the recovery of program control /36
structures. Logic expressions obtained from merging are nothing
else than logical expressions in high level languages—--appearing

in else statements, switch statements, and cyclical statements.

The production of logical expressions is based on using the
four rules below. BAmong these, two are translation rules. Two

are induction rules.

Key: (1) Rule (2) Induction (3) Translation

9

Key:

§3#y While(Logic—<xp)

=

V.—-! ‘(l‘;_—
L
Sdo
S
while (Logic-exp)

U
B8 IS PG TR
rwiich{exp)

— e s \,J_-., e
3 c" Cw %Hi M :
e ot cane C, Sy
dzfluh

° 1 z) '\‘
s - ‘v'-ic
. . e G 8y
i : dchuk s;

(1) Rule (2) Induction

10

With regard to program graphs repeatedly carrying out
merging--that is, actions on program graphs in accordance with
the translation rules and induction rules above--recursive
operations are carried out until it is not possible to translate
or induce anymore, and they stop. 1In this way, logic expressions
are then restored. As far as carrying out analysis on these
logic expressions and program graphs is concerned, it is then
possible to restore control structures associated with high level
language. Restoration of control structures has the following

four rules.

Continue and break statements in C language--speaking in
fundamental terms—--are GoTo statements. The two statements make
C language more flexible to control cycles while making C
programs more succinct and easy to understand--embodying C
language characteristics. However, as far as these two sentences
are concerned--while making C language program flow graphs give
rise to the appearance of unstructured factors--break statements
will cause cyclic abnormality exports. Continue sentences create
coordinate cycles. If GoTo sentences are used for the
realization of the unstructured portion of program flow graphs
given rise to by continue and break, then, with regard to /37
original programs, very large changes are produced. Readings can
vary, bringing difficulties for understanding programs. What is
most important is that there is no embodiment of the
characteristics of C language itself. Because of this, in C
decompilation, recovery of Continue and break is extremely
important.

Restoring--in C language--break statements and Continue

statements is based on the rules below:

AR

while(Logic-¢xp)

while(Logic—€ap)

L4
t
" .
break;
]

I
.

R ..v.hﬂc(lcgic_:xp)

Key: (1) Rule (2) Induce

As far as the restoration of program flow graph control
structures are concerned, it is nothing else than the carrying
out of repeated scanning of program graphs and step by step
analysis. Periods produce a good many intermediate results. We
take these intermediate program codes and store them in program
graphs, that is, transformations associated with each iteration
of intermediate results, reflecting--in program graphs--
alterations associated with interface junction point information.
Through repeated scanning, step by step analysis, and
restoration, program graphs also follow along with translation
and gradually approach the control structures of high level
language. When control flow analysis reaches a certain stage,
that is, program graphs no longer translating, then, the whole
analysis process is finished. Program graphs at this time come
close to expressing high level programs which are translated out.

Below, basic algorithms for control structure restoration
are introduced:

(1) With regard to logic decisions, carry out merging,
producing logic expressions.

(2) Identify and record cyclical structures.

(3) Identify and restore break statements and continue
statements in cyclical structures as well as GoTo statements
which jump out from within cycles.

(4) Identify if-else structures and Switch structures.

(5) Carry out translations on identified if-else structures
and switch structures, making them able by induction to become
if-else structures and Switch structures. At the same time,
identify unstructured components.

(6) Carry out processing of unstructured components.

(7) Restore various types of control structures, taking
results and storing them in program graphs.

Due to mutual insertion into sets associated with various
types of control structures, each step in algorithms, therefore,
is capable in all cases of needing recursive transfers. What

corresponds to this is nothing else than the carrying out of

13

repeated scanning of program graphs. Again, taking each scanning
iteration result to store in program graphs, it causes program
graphs to translate step by step into high level programs.

Oour decompilation system is already realized on Micor VAX
II, under VMS operating systems, using C language. At the
present time, this system's operating results are very good.

REFERENCES

1 Rk, VR, IR A E. LAM
. PR, PUAbAF MM

2 Hopwood, gregory Littell 1978 Decompilation,
PH., D dissertion

3 Mosgo! B., Tool Ada and the *Middlc End”
of the PQCC Ada Compiler 1980 o

(Editor Zhang Tingjun)

14

DISTRIBUTTON LIST

DISTRTIBUTTION DIRECT TO RECIPIENT

ORGANIZATION MICROFICHE

BO85 DIA/RTS-2FI
4 C509 BALIOC509 BALIISTIC RES IAB

C510 R&T IABS/AVEADCOM
C513 ARRADCOM

C535 AVRADOOM/TSARCOM
C539 TRASANA

Q592 FSTC

Q619 MSIC REDSTONE
Q008 NTIC

Q043 AFMIC-IS

E051 HQ USAF/INET
E404 AEDC/DOF

E408 AFWL

E410 AFDTC/IN

E429 SD/IND

PO05 DOE/ISA/DDI

PO50 CIA/OCR/ADD/SD
1051 AFIT/IDE

PO90 NSA/CDB

2206 FSL

RFRPNRPRPRRPRPREMEHEBBEORRP PR

Microfiche Nbr: FTD95C000276.

, NAIC-ID(RS)T-0025-95

